1.- Introduction : R. J. Gardner, S. Kwapien and D. P. Laurie working on a conjecture of B. Grünbaum, see [2], reached two elegan conjectures, including inequalities, about ovals (compact plane convex sets).

The author gives proofs for these conjectures below. The above mentioned conjectured the following, see $[1]$.
-. Let F be an oval and L_{1}, L_{2}, L_{3} three concurrent str. lines through the same interior point of F dividing F into six regions with area $A_{i} \beta_{i} i=1,2,3$, see fig. (1), below.

First conjecture:

$$
\frac{A_{1}}{B_{1}}+\frac{A_{2}}{B_{2}}+\frac{A_{3}}{B_{3}} \geqslant \frac{3}{2}
$$

Second conjecture:

$$
\frac{A_{2}+A_{3}}{B_{1}}+\frac{A_{3}+A_{1}}{B_{2}}+\frac{A_{1}+A_{2}}{B_{3}} \geqslant 3
$$

2.- Proof of the first conjecture.

Theorem 1 .

$$
\frac{A_{1}}{B_{1}}+\frac{A_{2}}{B_{2}}+\frac{A_{3}}{B_{3}} \geqslant \frac{3}{2}
$$

Proof.
Let L_{1} intersects F at the points L, G, L_{2} at the points K, E and L_{3} at the points D, H. The lines $K L, H G, D E$ are being intersected at the points A, C, B.
CASE 1.
Suppose that P is an interior point of the triangle $A B C$ see fig. (2).

It is obvious that:

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{A_{i}}{B_{i}} \geqslant \frac{[P D E]}{[P K A H]}+\frac{[P G H]}{[P D B L]}+\frac{[P L K]}{[P G(E]} \tag{1}
\end{equation*}
$$

Where $[W]$ denotes the area of the figure W.
From (1) it is easily understood that, it is enough to prove the problem for a triangle. Taking into account the properties and the theorems of an affinity transformation, we can see that, there is an affinity transforming $A B C$ into an equilateral triangle. Also, we know that affinities preserve the area ratio. Therefore we only have to prove the problem for an equilateral triangle. Let $A B C$ be an equilateral and P an interior point with x, y, Z its distance from each of the sides $B C,(A, A B$. The parallel through P to the side $B C$ intersects $A B$ and $A C$ at the points M, N respectively. (see fig. 3)
 -4-

It is elementary to calculate the areas of the triangles MKP, HPN . We find:

$$
[M K P]=\frac{(M P)^{2} \sqrt{3} \sin \omega}{4 \sin \left(120^{\circ}-\omega\right)} \quad[H P N]=\frac{(P N)^{2} \sqrt{3} \sin \left(120^{\circ}-9\right)}{4 \sin 8}
$$

Then using the inequality

$$
\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2} \geqslant \frac{\lambda_{1} \lambda_{2}\left(x_{1}+x_{2}\right)^{2}}{\lambda_{1}+\lambda_{2}}, \quad \begin{aligned}
& \lambda_{1}, \lambda_{2}, x_{1}, x_{2} \in \mathbb{R} \\
& \lambda_{1}+\lambda_{2}>0
\end{aligned}
$$

we have:

$$
[M K P]+[H P N]=\lambda_{1}(M P)^{2}+\lambda_{2}(P N)^{2} \geqslant \frac{\lambda_{1} \lambda_{2}(M N)^{2}}{\lambda_{1}+\lambda_{2}}
$$

$$
\text { If we take } \quad \lambda_{1}=\frac{\sqrt{3} \sin \omega}{4 \sin \left(120^{\circ}-\omega\right)}, \quad \lambda_{2}=\frac{\sqrt{3} \sin (120-9)}{4 \sin \theta}
$$

then, an easy calculation will give.

$$
[P K A H]=[A M N]-[M P K]-[H P N] \leqslant \frac{3(M N)}{8}\left[\frac{3}{2}+\frac{1}{\operatorname{cotg} \omega+\operatorname{cotg}(M \omega \omega)}\right]^{-1}
$$

$$
(A M N)=\frac{M N^{2} \sqrt{3}}{4}
$$

Also $\quad[P D E]=\frac{1}{2} x^{2}\left[\operatorname{cotg} \omega+\operatorname{cotg}\left(120^{\circ}-g\right)\right]$
Therefore, easily we obtain that:

$$
\frac{[P D E]}{[P K A H]} \geqslant\left(\frac{x}{y+z}\right)^{2}\left[1+\frac{\sqrt{3}}{2}(\operatorname{cotg} \omega+\cot 9(120-9))\right]
$$

Denoting $\quad \operatorname{cotg} \omega=p, \quad \operatorname{cotg} g=q, \quad \operatorname{cotg} \varphi=r$
we have to prove that:

$$
\sum\left(\frac{x}{y+z}\right)^{2}+\sum \frac{\sqrt{3}}{2}\left(\frac{x}{x+z}\right)^{2}\left[p+\frac{\sqrt{3}-9}{1+9 \sqrt{3}}\right] \geqslant \frac{3}{2}
$$

where the sums are cyclic over $\quad x, y, z-p, q, r$ or the equivalent to (3)

$$
\sum\left[\left(\frac{x}{y+z}\right)^{2}(1+1+\bar{a})+4\left(\frac{z}{x+y}\right)^{2} \frac{1}{2+\beta \sqrt{3}}\right] \geqslant 3
$$

but,

$$
\left(\frac{x}{y+z}\right)^{2}(1+p \sqrt{3})+4\left(\frac{z}{x+y}\right)^{2} \frac{1}{1+p \sqrt{3}} \geqslant \frac{4 x z}{(x+y)(y+z)}
$$

So, we have to prove that.

$$
4 \sqrt{\frac{x z}{(x+y)(y+z)}} \geqslant 3
$$

or, that: $\quad \sum x y(x+y) \geqslant 6 x \psi z$
which is elementary.

The equality follows from $(1),(2),(5),(6)$ that is the equality holds iff: $x=y=z$ and $p=q=r=\frac{1}{\sqrt{3}}$ or which is the same, if and only if F is a triangle and P coincides with the centroid and the lines L_{1}, L_{2}, L_{3} are parallel to the sides respectively.

CASE 2.
Suppose that P is not an interior point of the triangle $A B C$, see fig. (4).

It is very easy to prove $\quad \frac{A_{2}}{B_{2}}+\frac{A_{3}}{B_{3}}>\frac{3}{2}$
Because the obvious inequalities

$$
\frac{A_{2}}{B_{2}}>\frac{A_{2}}{[L P T]},-\frac{A_{3}}{B_{3}}>\frac{A_{3}}{[P G S]}
$$

we have to prove

$$
\frac{A_{2}}{[L P T]}+\frac{A_{3}}{[P G S]}>\frac{3}{2}
$$

We take the str. line $M G N$ parallel to $K L$, then
$\frac{A_{2}}{[L P T]}>\frac{[P G M]}{[L P T]}=\frac{(P G)^{2}}{(P L)^{2}}$, also $\frac{A_{3}}{[P G S]}>\frac{A_{3}}{[P G N]}=\frac{(P L)^{2}}{(P G)^{2}}$
Therefore

$$
\frac{A_{2}}{[L P T]}+\frac{A_{3}}{[P G S]}>\frac{(P G)^{2}}{(P L)^{2}}+\frac{(P L)^{2}}{(P G)^{2}} \geqslant 2>\frac{3}{2}
$$

CASE 3.
Suppose $K L$ parallel to $H G$. The proof as in the case 2.
3.- The proof of the second conjecture.

Theorem 2.

$$
\frac{A_{2}+A_{3}}{B_{1}}+\frac{A_{1}+A_{3}}{B_{2}}+\frac{A_{1}+A_{2}}{B_{3}} \geqslant 3
$$

CASE 1.
Suppose that P is an interior point of the triangle $A B C$ see fig.(2)

As in the first conjecture, from the fig. (2), it is enough to prove
$\frac{A_{2}+A_{3}}{B_{1}}+\frac{A_{3}+A_{1}}{B_{2}}+\frac{A_{1}+A_{2}}{B_{3}} \geqslant \frac{[P K L]+[P G N]}{[P K A H]}+\frac{[P K L]+[P D E]}{[P L B D]}+\frac{[P D E]+[P G H]}{[P E(G]}$

We need the following lemma.

Lemma

Let $A B C$ be a triangle and P, N, M are points on the sides $B C, C A, A B$ respectively. We will show that:

$$
Q_{A}=\frac{[B P M]+[P C N]}{[A M P N]} \geqslant \frac{\sin (B+\omega) \sin \varphi}{\sin B \sin (\varphi+\omega)}+\frac{\sin (C+\varphi) \sin \omega}{\sin C \sin (\varphi+\omega)}-1
$$

fig. 5
where A, B, C the angles of the triangle $A B C$
$\hat{B P M}=\omega, \hat{C P N}=\varphi$. The equality iff $\quad M N / / B C$
It is elementary to see that:

$$
\begin{aligned}
& \frac{[B P M]}{[A B C]}=\frac{B M \cdot B P}{c \cdot a}=\frac{k_{1} B P^{2}}{C \cdot a} \\
& \frac{[P C N]}{[A B C]}=\frac{C N \cdot C P}{b \cdot a}=\frac{k_{2} C P^{2}}{b_{1} a}
\end{aligned}
$$

where $\quad K_{1}=\frac{\sin \omega}{\sin (B+\omega)} \quad K_{2}=\frac{\sin \varphi}{\sin (C+\varphi)}$

Using the well known inequality (2)

$$
\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2} \geqslant \frac{\lambda_{1} \lambda_{2}\left(x_{1}+x_{2}\right)^{2}}{x_{1}+x_{2}}
$$

we obtain

$$
\frac{[B P M]+[P C N]}{[A B C]} \geqslant \frac{a k_{1} k_{2}}{b k_{1}+C K_{2}}
$$

therefore it holds:

$$
Q_{A}=\frac{1}{\frac{[A B C]}{[B M P]+[P C N]}-1} \geqslant \frac{1}{\frac{b k_{1}+c k_{2}}{a k_{1} k_{2}}-1}
$$

$$
\text { but } \begin{aligned}
& \frac{b k_{1}+C k_{2}}{a k_{1} k_{2}}=\frac{\sin B \sin (c+\varphi)}{\sin A \sin \varphi}+\frac{\sin (\sin (B+\omega)}{\sin A \sin \omega}= \\
& =\frac{\sin B \sin C}{\sin A}[\operatorname{cotg} \varphi+\operatorname{cotg} \omega]+1
\end{aligned}
$$

From (8) and (9) follows:

$$
Q_{A} \geqslant \frac{\sin A}{\sin B \sin C\left[\operatorname{cotg} \omega_{+} \operatorname{cotg} \varphi\right]}
$$

It is very easy and elementary to see that the following identity holds

$$
\frac{\sin A}{\sin B \sin C[\operatorname{cotg} \omega+\operatorname{cotg} \varphi]}=\frac{\sin (B+\omega) \sin \varphi}{\sin B \sin (\varphi+\omega)}+\frac{\sin (C+\varphi) \sin \omega}{\sin C \sin (\varphi+\omega)}-1
$$

(10) and (11) prove our lemma.

The equality from (2), when

$$
\lambda_{1} x_{1}=\lambda_{2} x_{2}
$$

or $\quad \frac{K_{1} B P}{C}=\frac{k_{2} C P}{b} \quad$ or $\quad \frac{B M}{C}=\frac{C N}{b}$.
that is $M N$ parallel to $B C$.
We are now ready to prove the second conjecture.
Let,

$$
Q=\frac{[K L P]+[P G H]}{[A K P H]}+\frac{[K L P]+[D E P]}{[B D P L]}+\frac{[D E P]+[P G H]}{[P E G C]}
$$

fig. 5^{a}

$$
Q_{A}=\frac{[K L P]+[P G H]}{[A K P H]} \geqslant \frac{\sin \partial \sin (180-C-\omega+\varphi)}{\sin (180-A-\varphi) \sin (180-B+\sigma+\omega)}+\frac{\sin (180-C-\omega) \sin (180-A-\varphi+9)}{\sin \varphi \sin (180-B-\partial+\omega)}-1
$$

Therefore $Q=\sum_{A, B, C} Q_{A} \quad$ or

$$
Q=\sum_{\substack{w, \varphi, \sigma}}\left(\frac{\sin \theta \sin \left(180^{\circ}-(-\omega+\varphi)\right.}{\sin (180-A-\varphi) \sin \left(180-B-\theta+\omega^{\prime}\right)}+\frac{\sin (180-A-\varphi) \sin (180-B-\theta+\omega)}{\sin \theta \sin (180-C-\omega+\varphi)}\right)-3 \quad \text { (12) }
$$

The sums are cyclic over ω, φ, γ and A, B, C
Obviously, follows

$$
Q \geqslant 2+2+2-3=3
$$

The equality according to our lemma if $K H / / L G, G E \| D H$. and $L D \| K E$. Also taking into account (12) we find that LG, DH, KE must be parallel to the sides of, that is P must coincide with the cendroid and L_{1}, L_{2}, L_{3} must be parallel to the sides. Therefore the equality holds iff F is a triangle and P its centroid, L_{1}, L_{2}, L_{3} must be parallel to the sides respectively.

CASE 2.
Let $(\hat{K K, G H})=\partial \rightarrow 0$ for the triangle $A B C$ holds:

$$
\frac{[P K L]+[P G H]}{[A K P H]}+\frac{[P D E]+[P K L]}{[P L B D]}+\frac{[P D E]+[P G H]}{[P E C G]}>3
$$

But

$$
\frac{[P K L]+[P G H]}{[A K P H]} \rightarrow 0
$$

fig. 6

Taking into account the above we can easily prove the CASE 3, when P is an exterior point of $A B C$. (We take the parallel through L to GH).

Comment. The most part of Grümbaum's conjecture, see [2], follows as a natural consequense from theorem 1. The author of the above article has an easy Geometric proof for the case $f(k)=1$ which intends to publish in a separate paper.

George Tsintsifas
23 Platonos str.
Thessaloniki, Grecee

References

I. R. J. Gardner, S. Kwapien and D. P. Laurie, Some inequalities related to planar convex sets. Canad. Math. Bull. 25(3). (1982). pp. 302-310.
2. B. Grünbaum. Measures of svmmetry for cowver sets, Proceedings of Symposia in Pure Math. Vol. VII, Convexity. Amer. Math. Soc. p. 270.
3. J. N. Lillington, Problems related to a conjecture by Grünhaum. Mathematika 21 (1974). pp, 45-54.
P.S. A different proof has been published by the author in Canad. Math. Bull. Vol $28(1), 1985$, p.p. 60-66.

